Modifikasi Gugus Fungsi Amina dan Imina
AMINA
Karbon, hidrogen, dan oksigen merupakan toga unsur yang paling lazim terdapat dalam sistem kehidupan. Nitrogen merupakan unsur ke empat. Amina adalah senyawa organik yang mengandung atom-atom nitrogen trivalent, yang terikat pada satu atom karbon atau lebih : RNH2, R2NH atau R3N.
Klasifikasi dan Tata Nama Amina
Amina dapat dikelompokkan sebagai primer, sekunder atau tersier, menurut banyaknya substituent alkil atau aril yang terikat pada nitrogen.
Suatu nitrogen amina dapat memiliki empat gugus atau atom yang terikat padanya dalam hal nitrogen itu merupakan bagian dari suatu ion positif. Senyawa-senyawa ion ini terbagi dalam dua kategori. Jika satu ayau lebih yang terikat ialah H, maka senyawa ini disebutgaram amina. Jika keempat gugus itu alkil atau aril, maka senyawa itu disebutgaram ammonium kuartener.
Garam amina :
Garam ammonium kuartener
Amina sederhana biasanya diberi nama berdasarkan sistem gugus-fungsional. Gugus alkil atau aril disbut terlebih dahulu, kemudian ditambahkan akhiran–amina.
Diamian diberi nama alkane induknya (dengan angka awalan yang sesuia) yang diikuti dengan akhiran –diamina.
Jika lebih dari satu tipe gugus alkil terikat pada nitrogen gugus alkil terbesar dianggap sebagai induk. Gugus alkil tambahan dinyatakan dengan awalan N-alkil-.
Jika terdapat kefungsionalan yang dimiliki prioritas tata nama yang lebih tinggi, maka digunakan awalan amino.
Sifat Fisis Amina
Amina membentuk ikatan hidrogen. Ikatan hidrogen N-HN lebih lemah daripada ikatan hidrogen O-HO karena N kurang elektronegarif dibandingkan dengan O dank arena itu ikatan NH kurang polar. Pengikatan hidrogen yang lemah antara molekul amina menyebabkan titik didihnya berada antara titik didih senyawa tanpa ikatan hidrogen dan dan senyawa berikatan hidrogen kuat dengan bobot molekul yang bersamaan.
Amina berbobot molekul rendah larut dalam air karena membentuk ikatan hidrogen dengan air. Amina tersier maupun amina sekunder dan primer dapat membentuk ikatan hidrogen karena memiliki pasangan elektron menyendiri yang dapat digunakan untuk membentuk ikatan hidrogen dengan air.
Tabel. Sifat Fisis beberapa amina
Nama | Struktur | Titik DidihoC | Kelarutan dalam air |
Metilamina | CH3NH2 | -6.3 | ∞ |
Dimetilamina | (CH3)2NH | 7.5 | ∞ |
Trimetilamina | (CH3)3N | 3 | ∞ |
Etilamina | CH3CH2NH2 | 17 | ∞ |
Benzilamina | C6H5CH2NH2 | 185 | ∞ |
Anilina | C6H5NH2 | 184 |
Pembuatan Amina
Teknik pembuatan amina dapat dibagi kedalam tiga kategori umum.
Substitusi nukleofilik :
Reduksi :
Penataan ulang amida
Kebasaan Amina
Dalam larutan air suatu amina bersifat basa lemah dan menerim sebuah proton dari air dalam suatu reaksi asam-basa yang reversible. Suatu amina yang merupakan basa yang lebih kuat akan mempunyai asam konjugat yang jauh lebih lemah dan karenanya pKa yang lebih rendah.
Sifat-sifat struktural yang sama yang mempengaruhi kuat asam relatif dari asam karboksilat dan fenol juga mempengaruhi kuat basa relatif dari amina
- Jika amina bebas terstabilkan relatif terhadap kationnya, maka maka amina itu merupakan basa yang lebih lemah
- Jika kation itu terstabilkan relatif terhadap amina bebasnya, maka amina itu adalah basa yang lebih kuat.
Kelarutan amina dipengaruhi oleh beberapa faktor yaitu :
- Gugus pelepas elektron, pada nitrogen akan menaikan kebasaan dengan cara menyebarkan muatan positif dalam kation. Dengan penyebaran muatan positif, kation itu terstabilkan relatif terhadap amina bebas. Oleh karena itu, kuat basa bertambah dalam deret NH3,CH3NH2, dan (CH3)2
- Kation terstabilkan oleh bertambahnya solvasi. Dalam hai ini, pelarut membantu menyebarkan muatan positif.
- Hibridisasi atom nitrogen dalam senyawa nitrogen juga mempengaruhi kuat basa. Suatu molekul dengan suatu nitrogen sp2 kurang basa karena elektron-elektron menyendiri lebih kuat terikat, dan senyawa nitrogen bebas lebih terstabilkan.
- Resonansi juga mempengaruhi kuat basa suatu amina. Dimana amian yang memiliki kebasaan yang tinggi karena dipengaruhi oleh terstabilkannya suatu resonansi.
Reaksi Substitusi Dengan Amina
Penggunaan amina dalam sintesis
Sintesis senyawa yang mengandung nitrogen mendapatkan perhatian khusus dari para ahli kimia organik yang berkecimpung dalam farmakologi dan ilmu pngetahuan biologis lainnya, karena banyak biomolekul yang mengandung nirogen. Sebagian besar yang digunakan untuk mensintesis senyawa nitrogen dari amina telah dibahas dalam buku lain.
Banyak reaksi amina adalah hasil serangan nukleofilik oleh elektron menyendiri dari nitrogen amina. Reaksi substitusi suatu amina dengan alkil halida adalah suatu contoh dari amina yang bertindak sebagai suatu nukleofil. Amina dapat juga digunakan sebagai nukleofil dalam reaksi substitusi asil nukleofilik. Jika derivat asam karboksilat merupakan reagensia karbonilnya, maka diperoleh amida sebagai produk. Jika reaksi karbonil berupa aldehid atau keton, produknya dalah imina (dari amina primer, RNH2) atau suatu enamina (dari suatu amina sekunder, R2NH).
-NR3+OH–) merupakan suatu teknik sintetik lain. Eliminasi Hofmann dari amonium kuarter hidroksida, lebih berguna sebagai suatu alat analitis dari pada suatu alat sintetik, karena dihasilkan campuran alkena. (juga, suatu reaksi eliminasi alkil halida merupakan jalur yang lebih mudah menuju alkena di laboratorium). Bahkan spektroskopi nmr telah lebih bayak digunakan sebgai suatu alat bantu dalam suatu struktur dari pada eliminasi Hofmann. Di pihak lain,pengubahan suatu arilamina menjadi garam diazonium yang disusul reaksi substitusi, sangat berguna dalam sitesis organik, dan untuk memeriksa tipe senyawa yang mudah diperoleh dari garam arildiazonium.
Enantiomer tunggal dari amina kristal lazim dijumpai dalam tumbuhan. Karena kebasaannya, beberapa amina ini dapat digunakan untuk memisahkan asm-asam karboksilat rasimik. Dua diantaranya ialah striknina (strychnine) dan brusina (brucine), keduanya dapat diisolasi dari biji bidara laut (strychnos nux-vomica; kedua senyawa itu merupakanstimulan yang bersifat racun dalam sistem syaraf pusat). Berikut adalah beberapa senyawa yang dapat diperoleh dari amina:
- Garam amina
- Amida
- Imida
- Enamina
- Garam arildiazonium
- Alkena
IMINA
Imina atau imino adalah gugus fungsi atau senyawa kimia yang mengandung ikatan rangkap karbon–nitrogen. Atom nitrogen dapat melekat pada hidrogen (H) atau gugus organik (R). Jika gugus ini bukan atom hidrogen, maka senyawa tersebut kadang-kadang dapat dirujuk sebagai basa Schiff.[1]Atom larbon atom memiliki tambahan dua ikatan tunggal
Imina ( / ɪ ˈ m ː n / atau / ˈ ɪ m ɪ n / ) adalah gugus fungsi atau senyawa kimia yang mengandung ikatan rangkap karbon - nitrogen . Atom nitrogen dapat dilekatkan ke hidrogen (H) atau grup organik (R). Jika kelompok inibukan atom hidrogen, maka senyawa tersebut kadang-kadang dapat disebut sebagai pangkalan Schiff . [1] Atom karbon memiliki dua ikatan tunggal tambahan. [2] [3] [4] Istilah "imine" diciptakan pada tahun 1883 oleh kimiawan Jerman Albert Ladenburg . [5]
Nomenklatur dan klasifikasi
Biasanya imina mengacu pada senyawa dengan konektivitas R 2 C = NR, seperti yang dibahas di bawah ini. Dalam literatur yang lebih tua, imina mengacu pada analog aza dari epoksida. Dengan demikian, etilenimin adalah spesies cincin beranggota tiga C2H4 NH. [6]
Imina terkait dengan keton dan aldehid dengan penggantian oksigen dengan kelompok NR.Ketika R = H, senyawa tersebut adalah imina primer, ketika R adalah hidrokarbil , senyawa tersebut adalah imina sekunder. Imina menunjukkan reaktivitas yang beragam dan biasanya ditemui di seluruh kimia. [4] Ketika R 3 adalah OH, imine disebut oksime , dan ketika R 3 adalah NH 2 imina disebut hidrazon .
Imina primer di mana C melekat pada hidrokarbil dan H disebut aldimine primer ; imina sekunder dengan kelompok seperti ini disebut aldimine sekunder . [7] Imina primer di mana C melekat pada dua hidrokarbil disebut ketimine primer ; imina sekunder dengan kelompok seperti ini disebut ketimin sekunder . [8]
N-Sulfinyl imines adalah kelas khusus imina yang memiliki gugus sulfinil yang terikat pada atom nitrogen.
Sintesis imina
Imina biasanya disiapkan oleh kondensasi amina primer dan aldehida dan keton kurang umum:
Lebih banyak metode khusus
Beberapa metode lain ada untuk sintesis imina.
Reaksi yang paling penting dari imina adalah hidrolisis mereka ke senyawa amina dankarbonil yang sesuai. Jika tidak, gugus fungsi ini berpartisipasi dalam banyak reaksi lain, banyak yang analog dengan reaksi aldehida dan keton.
Agak seperti induk amina, imina sedikit bersifat basa dan dapat berefleksi secara reversibel untuk menghasilkan garam iminium. Turunan iminium sangat rentan terhadap reduksi ke amina menggunakan transfer hidrogenasi atau dengan aksi stoikiometrik natrium cyanoborohidrida .Karena imina yang berasal dari keton yang tidak simetris bersifat prokiral , reduksi mereka adalah metode yang berguna untuk sintesis amina kiral.
Sebagai ligan
Imina adalah ligan umum dalam kimia koordinasi . Kondensasi salicylaldehyde danethylenediamine memberi keluarga agen chelating yang mengandung imine seperti salen .
Pengurangan imina
Imina dapat direduksi menjadi amina melalui hidrogenasi misalnya dalam sintesis m -tolylbenzylamine: [16]
Zat pereduksi lain adalah lithium aluminium hidrida dan natrium borohidrida . [17]
Asymmetric imine reduction pertama dilaporkan pada tahun 1973 oleh Kagan menggunakan Ph (Me) C = NBn dan PhSiH 2 dalam hidrosililasi dengan ligan kiral Katalis DIOP dan rhodium (RhCl (CH 2 CH 2 ) 2 ) 2 . [18] Banyak sistem telah diselidiki. [19] [20]
Biasanya imina mengacu pada senyawa dengan konektivitas R 2 C = NR, seperti yang dibahas di bawah ini. Dalam literatur yang lebih tua, imina mengacu pada analog aza dari epoksida. Dengan demikian, etilenimin adalah spesies cincin beranggota tiga C2H4 NH. [6]
Imina terkait dengan keton dan aldehid dengan penggantian oksigen dengan kelompok NR.Ketika R = H, senyawa tersebut adalah imina primer, ketika R adalah hidrokarbil , senyawa tersebut adalah imina sekunder. Imina menunjukkan reaktivitas yang beragam dan biasanya ditemui di seluruh kimia. [4] Ketika R 3 adalah OH, imine disebut oksime , dan ketika R 3 adalah NH 2 imina disebut hidrazon .
Imina primer di mana C melekat pada hidrokarbil dan H disebut aldimine primer ; imina sekunder dengan kelompok seperti ini disebut aldimine sekunder . [7] Imina primer di mana C melekat pada dua hidrokarbil disebut ketimine primer ; imina sekunder dengan kelompok seperti ini disebut ketimin sekunder . [8]
- Aldimine primer
- Aziridine dan turunannya kadang-kadang disebut sebagai imina.
N-Sulfinyl imines adalah kelas khusus imina yang memiliki gugus sulfinil yang terikat pada atom nitrogen.
Sintesis imina
Imina biasanya disiapkan oleh kondensasi amina primer dan aldehida dan keton kurang umum:
- RNH 2 + R′C (O) R ′ ′ → RN = C (R ′) (R ′ ′) + H 2 O
Lebih banyak metode khusus
Beberapa metode lain ada untuk sintesis imina.
- Reaksi dari azida organik dengan logam carbenoid (diproduksi dari senyawa diazocarbonyl). [12]
- Kondensasi asam karbon dengan senyawa nitroso .
- Penataan ulang trityl N-haloamines dalam penataan ulang Stieglitz .
- Dehidrasi hemiaminal . [13]
- Dengan reaksi alkena dengan asam hidrazoat dalam reaksi Schmidt .
- Dengan reaksi asam nitril, asam klorida, dan aren dalam reaksi Hoesch .
- Sintesis multikomponen 3- tiazolina dalam reaksi Asinger .
- Ketimin primer dapat disintesis melalui reaksi Grignard dengan nitril . [14] [15]
- Imina berkurang dalam aminasi reduktif .
- Imina bereaksi dengan amina ke aminal , lihat misalnya sintesis cucurbituril .
- Sebuah imina bereaksi dengan diena dalam reaksi Aza Diels-Alder ke tetrahidropiridin.
- Imina dapat dioksidasi dengan asam meta-kloroperoksibenzoat (mCPBA) untuk memberikan oksaziridin
- Sebuah imina aromatik bereaksi dengan enol eter ke quinoline dalam reaksi Povarov .
- A tosylimine bereaksi dengan senyawa karbonil α, β-unsaturated ke amina alilik padareaksi Aza-Baylis-Hillman .
- Imina adalah perantara dalam alkilasi amina dengan asam format dalam reaksi Eschweiler-Clarke .
- Penataan ulang dalam kimia karbohidrat yang melibatkan imina adalah penataan ulang Amadori .
- Reaksi transfer metilena dari imina oleh sulfonium ylide tidak stabil dapat memberikan sistem aziridine .
- Imina bereaksi, secara termal, dengan ketena dalam sikdisi siklik [2 + 2] untuk membentuk β-laktam dalam sintesis Staudinger .
- Sebuah imina dapat bereaksi dengan dialkilfosfit dalam reaksi Pudovik dan reaksiKabachnik-Fields
Agak seperti induk amina, imina sedikit bersifat basa dan dapat berefleksi secara reversibel untuk menghasilkan garam iminium. Turunan iminium sangat rentan terhadap reduksi ke amina menggunakan transfer hidrogenasi atau dengan aksi stoikiometrik natrium cyanoborohidrida .Karena imina yang berasal dari keton yang tidak simetris bersifat prokiral , reduksi mereka adalah metode yang berguna untuk sintesis amina kiral.
Sebagai ligan
Imina adalah ligan umum dalam kimia koordinasi . Kondensasi salicylaldehyde danethylenediamine memberi keluarga agen chelating yang mengandung imine seperti salen .
Pengurangan imina
Imina dapat direduksi menjadi amina melalui hidrogenasi misalnya dalam sintesis m -tolylbenzylamine: [16]
Zat pereduksi lain adalah lithium aluminium hidrida dan natrium borohidrida . [17]
Asymmetric imine reduction pertama dilaporkan pada tahun 1973 oleh Kagan menggunakan Ph (Me) C = NBn dan PhSiH 2 dalam hidrosililasi dengan ligan kiral Katalis DIOP dan rhodium (RhCl (CH 2 CH 2 ) 2 ) 2 . [18] Banyak sistem telah diselidiki. [19] [20]
Modifikasi kimia dari protein tiol dengan reduksi dan alkilasi adalah umum dalam persiapan sampel proteomik untuk analisis dengan spektrometri massa (MS). Modifikasi pada kelompok fungsional lainnya kurang mendapat perhatian pada proteomik berbasis-MS. Modifikasi amina (Lys, N-termini) oleh dimetilasi reduktif atau dengan asilasi (misalnya pelabelan iTRAQ) baru-baru ini mendapatkan popularitas dalam pendekatan berbasis peptida (MS dari bawah). Modifikasi pada kelompok asam (Asp, Glu, C-termini) telah dieksplorasi sangat minim. Di sini, kami menggambarkan strategi pelabelan berurutan yang memungkinkan modifikasi lengkap tiol, amina, dan asam pada peptida atau protein utuh kecil. Metode ini termasuk ( 1 ) reduksi dan alkilasi tiol, ( 2 ) reduksi dimetilasi amina, dan ( 3 ) penengahan asam dengan beberapa amina. Skema modifikasi kimia ini menawarkan beberapa pilihan baik untuk penggabungan isotop stabil untuk kuantifikasi relatif dan untuk meningkatkan peptida atau protein sebagai analit MS.
Modifikasi Grup Amino
Modifikasi gugus amino melibatkan penambahan gugus fungsi pada ujung N dari asam amino .
Protein setelah terjemahannya mengalami modifikasi kimia yang disebut Post Translational Modification . Modifikasi ini dapat mengubah fungsi protein ketika melekat pada kelompok fungsional biokimia seperti asetat dengan mengubah sifat kimia dari asam amino atau dengan perubahan struktural seperti lipat, distribusi konformasi, stabilitas, aktivitas dll.
Jenis Modifikasi Grup Amino
Asetilasi
Asetalisasi adalah proses asilasi (pengantar gugus asil ke senyawa organik) yang melibatkan substitusi gugus asam asetat organik untuk atom hidrogen aktif pada N-terminus.
Modifikasi paling luas pada eukariota adalah Asetilasi dari kelompok protein α-amina N-terminal. Sekitar 50% protein ragi dan sekitar 90% protein pada manusia dimodifikasi oleh mekanisme ini. Pola modifikasi dilestarikan sepanjang evolusi. Meskipun itu adalah modifikasi umum, tidak banyak informasi yang tersedia untuk tentang fungsi biologis dari asetilasi N-α-terminal. N-α-acetyltransferase (NATs) adalah enzim yang bertanggung jawab untuk Asetilasi.NAT milik keluarga GNAT, yang terletak di bawah superfamili acetyltransferases . [1]
Asetilasi dan deasetilasi terjadi pada residu lisin di ekor N-terminal di asetilasi dan deasetilasi histone . Reaksi-reaksi ini terjadi di hadapan enzim histone acetyltransferase (HAT) atau histone deacetylase (HDAC).
Formasi Pyroglutamate
Pyroglutamate terbentuk melalui siklisasi (pembentukan cincin dalam senyawa kimia)glutamin . Ini biasanya diamati pada antibodi yang mengandung residu glutamat atau glutamin pada N-termini. Gugus amino dan glutamat atau glutamin mengembun membentuk cincin lima anggota yang disebut Pyroglutamate. Residu ini membuat protein lebih tahan terhadapaminopeptidase dan memiliki banyak peran fungsional. [2]
Ia mempertahankan integritas struktural pada N-terminal α-helix dan menyediakan lingkungan yang tepat untuk ionisasi residu Histidin untuk katalisis dan sitotoksisitas terhadap sel HeLa .
Myristoylation
N-myristoylation juga merupakan proses asilasi yang ditemukan khusus untuk gliserin asam amino N-terminal dalam protein di mana kelompok myristoy (berasal dari asam miristat) secara kovalen dilampirkan melalui ikatan amida dengan gugus alpha-amino N-terminal Glycine.Myristoylation memainkan peran penting dalam pensinyalan seluler sekunder, dalam infektivitasretrovirus dan onkogenesis pada Eukariota. Ini juga mempengaruhi fungsi fisiologis protein pengikat kalsium. [3] Enzim cytosolic N-myristoyltransferase (NMT) mengkatalisis Myristoylation.
Methylation
Metilasi protein adalah bentuk modifikasi pasca-translasi yang paling umum yang diamati. Mirip dengan modifikasi pasca-translasi lainnya, metilasi protein terlibat dalam mengatur interaksi protein-protein yang menghasilkan sejumlah besar efek selama peristiwa seluler utama, termasuk pengaturan transkripsi [4] [5] [6] respon stres, penuaan dan perbaikan protein [ 7]Aktivasi sel-T [8] , transportasi nuklir [9] , diferensiasi neuronal [10] , [11] fungsi saluran ion, dan pensinyalan sitokin. Protein dianggap termetilasi ketika kelompok metil ditambahkan pada satu atau lebih rantai samping nukleofilik. Metilasi pada rantai samping nitrogens dianggap sangat tidak dapat diubah sementara metilasi dari gugus karboksil berpotensi reversibel. Residu protein yang termetilasi pada nitrogen termasuk e-amin dari lisin, cincin imidazol histidin, bagian guanidino arginin, dan rantai samping amida nitrit glutamin dan asparagin.
Metilasi dalam protein meniadakan muatan negatif di atasnya dan meningkatkan hidrofobisitas protein. Metilasi pada rantai samping karboksilat menutupi muatan negatif dan menambah hidrofobik. N-Metilasi lisin tidak mengubah muatan kationik tetapi meningkatkan hidrofobik. Khususnya, dimetilasi dan trimetilasi rantai samping lisin dalam protein meningkatkan baik hidrofobik dan massa sterik dan dapat mempengaruhi interaksi protein-protein jika mereka berada dalam permukaan yang berinteraksi.
Karbamilasi
Karbamilasi terjadi ketika asam isocyanic (HCNO) bereaksi dengan residu amino terminus, seperti lisin, dari protein. Ini adalah salah satu modifikasi protein artifactual umum yang diakui untuk fokus Isoeletric . Faktor risikonya adalah urea (chaotrope) yang ada dalam larutan dan berada dalam kesetimbangan dengan amonium sianat . Asam isosianat adalah bentuk sianat yang bereaksi dengan gugus amino protein. Untuk karbamilasi terjadi gugus asam amino protein seperti lisin, rantai samping arginin harus terdeprotonasi yang biasanya terjadi pada pH basa. Karbamilasi terjadi ketika protein dibiarkan pada suhu kamar dalam larutan urea dan di mana asam isosianat dapat dengan bebas bereaksi dengan protein.
Karbamilasi oleh asam isosianat negatif untuk langkah selanjutnya dari karakterisasi protein karena asam isosianat bereaksi dengan ujung amino protein memblokir peptida atau protein ke sekuens N-terminal. Asam isosianat menyerang rantai samping residu lisin dan arginin yang membuat protein tidak cocok untuk banyak pencernaan enzim. Bahkan jika karbamilasi tidak mencegah digest enzimatik, seringkali akan membingungkan hasil dari eksperimenspektroskopi massa dengan peptida yang memiliki waktu retensi dan massa yang tidak terduga.Karbamilasi protein in vivo diamati di beberapa negara berpenyakit. [12]
Formilasi
Formilasi adalah salah satu modifikasi posttranslational protein, di mana protein dimodifikasi oleh lampiran kelompok formil. Mekanisme yang paling umum dipelajari adalah N6-formilasi lisin yang terkait dengan histone dan protein nuklir lainnya. Modifikasi translasi post histone dan protein kromatin lainnya memainkan peran dalam fisiologi ekspresi gen . "Residu N6-formil-lisin muncul untuk mewakili modifikasi sekunder histone endogen, yang mengandung kesamaan kimia dengan lisin N6-asetilasi yang diakui sebagai penentu penting ekspresi gen pada sel mamalia." Dari penelitian itu disimpulkan bahwa modifikasi N6-formil dari lisin mengganggu fungsi sinyal asetilasi dan metilasi, yang memainkan peran dalam fisiologi stres oksidatif dan nitrosatif. [13]
Modifikasi gugus amino melibatkan penambahan gugus fungsi pada ujung N dari asam amino .
Protein setelah terjemahannya mengalami modifikasi kimia yang disebut Post Translational Modification . Modifikasi ini dapat mengubah fungsi protein ketika melekat pada kelompok fungsional biokimia seperti asetat dengan mengubah sifat kimia dari asam amino atau dengan perubahan struktural seperti lipat, distribusi konformasi, stabilitas, aktivitas dll.
Jenis Modifikasi Grup Amino
Asetilasi
Asetalisasi adalah proses asilasi (pengantar gugus asil ke senyawa organik) yang melibatkan substitusi gugus asam asetat organik untuk atom hidrogen aktif pada N-terminus.
Modifikasi paling luas pada eukariota adalah Asetilasi dari kelompok protein α-amina N-terminal. Sekitar 50% protein ragi dan sekitar 90% protein pada manusia dimodifikasi oleh mekanisme ini. Pola modifikasi dilestarikan sepanjang evolusi. Meskipun itu adalah modifikasi umum, tidak banyak informasi yang tersedia untuk tentang fungsi biologis dari asetilasi N-α-terminal. N-α-acetyltransferase (NATs) adalah enzim yang bertanggung jawab untuk Asetilasi.NAT milik keluarga GNAT, yang terletak di bawah superfamili acetyltransferases . [1]
Asetilasi dan deasetilasi terjadi pada residu lisin di ekor N-terminal di asetilasi dan deasetilasi histone . Reaksi-reaksi ini terjadi di hadapan enzim histone acetyltransferase (HAT) atau histone deacetylase (HDAC).
Formasi Pyroglutamate
Pyroglutamate terbentuk melalui siklisasi (pembentukan cincin dalam senyawa kimia)glutamin . Ini biasanya diamati pada antibodi yang mengandung residu glutamat atau glutamin pada N-termini. Gugus amino dan glutamat atau glutamin mengembun membentuk cincin lima anggota yang disebut Pyroglutamate. Residu ini membuat protein lebih tahan terhadapaminopeptidase dan memiliki banyak peran fungsional. [2]
Ia mempertahankan integritas struktural pada N-terminal α-helix dan menyediakan lingkungan yang tepat untuk ionisasi residu Histidin untuk katalisis dan sitotoksisitas terhadap sel HeLa .
Myristoylation
N-myristoylation juga merupakan proses asilasi yang ditemukan khusus untuk gliserin asam amino N-terminal dalam protein di mana kelompok myristoy (berasal dari asam miristat) secara kovalen dilampirkan melalui ikatan amida dengan gugus alpha-amino N-terminal Glycine.Myristoylation memainkan peran penting dalam pensinyalan seluler sekunder, dalam infektivitasretrovirus dan onkogenesis pada Eukariota. Ini juga mempengaruhi fungsi fisiologis protein pengikat kalsium. [3] Enzim cytosolic N-myristoyltransferase (NMT) mengkatalisis Myristoylation.
Methylation
Metilasi protein adalah bentuk modifikasi pasca-translasi yang paling umum yang diamati. Mirip dengan modifikasi pasca-translasi lainnya, metilasi protein terlibat dalam mengatur interaksi protein-protein yang menghasilkan sejumlah besar efek selama peristiwa seluler utama, termasuk pengaturan transkripsi [4] [5] [6] respon stres, penuaan dan perbaikan protein [ 7]Aktivasi sel-T [8] , transportasi nuklir [9] , diferensiasi neuronal [10] , [11] fungsi saluran ion, dan pensinyalan sitokin. Protein dianggap termetilasi ketika kelompok metil ditambahkan pada satu atau lebih rantai samping nukleofilik. Metilasi pada rantai samping nitrogens dianggap sangat tidak dapat diubah sementara metilasi dari gugus karboksil berpotensi reversibel. Residu protein yang termetilasi pada nitrogen termasuk e-amin dari lisin, cincin imidazol histidin, bagian guanidino arginin, dan rantai samping amida nitrit glutamin dan asparagin.
Metilasi dalam protein meniadakan muatan negatif di atasnya dan meningkatkan hidrofobisitas protein. Metilasi pada rantai samping karboksilat menutupi muatan negatif dan menambah hidrofobik. N-Metilasi lisin tidak mengubah muatan kationik tetapi meningkatkan hidrofobik. Khususnya, dimetilasi dan trimetilasi rantai samping lisin dalam protein meningkatkan baik hidrofobik dan massa sterik dan dapat mempengaruhi interaksi protein-protein jika mereka berada dalam permukaan yang berinteraksi.
Karbamilasi
Karbamilasi terjadi ketika asam isocyanic (HCNO) bereaksi dengan residu amino terminus, seperti lisin, dari protein. Ini adalah salah satu modifikasi protein artifactual umum yang diakui untuk fokus Isoeletric . Faktor risikonya adalah urea (chaotrope) yang ada dalam larutan dan berada dalam kesetimbangan dengan amonium sianat . Asam isosianat adalah bentuk sianat yang bereaksi dengan gugus amino protein. Untuk karbamilasi terjadi gugus asam amino protein seperti lisin, rantai samping arginin harus terdeprotonasi yang biasanya terjadi pada pH basa. Karbamilasi terjadi ketika protein dibiarkan pada suhu kamar dalam larutan urea dan di mana asam isosianat dapat dengan bebas bereaksi dengan protein.
Karbamilasi oleh asam isosianat negatif untuk langkah selanjutnya dari karakterisasi protein karena asam isosianat bereaksi dengan ujung amino protein memblokir peptida atau protein ke sekuens N-terminal. Asam isosianat menyerang rantai samping residu lisin dan arginin yang membuat protein tidak cocok untuk banyak pencernaan enzim. Bahkan jika karbamilasi tidak mencegah digest enzimatik, seringkali akan membingungkan hasil dari eksperimenspektroskopi massa dengan peptida yang memiliki waktu retensi dan massa yang tidak terduga.Karbamilasi protein in vivo diamati di beberapa negara berpenyakit. [12]
Formilasi
Formilasi adalah salah satu modifikasi posttranslational protein, di mana protein dimodifikasi oleh lampiran kelompok formil. Mekanisme yang paling umum dipelajari adalah N6-formilasi lisin yang terkait dengan histone dan protein nuklir lainnya. Modifikasi translasi post histone dan protein kromatin lainnya memainkan peran dalam fisiologi ekspresi gen . "Residu N6-formil-lisin muncul untuk mewakili modifikasi sekunder histone endogen, yang mengandung kesamaan kimia dengan lisin N6-asetilasi yang diakui sebagai penentu penting ekspresi gen pada sel mamalia." Dari penelitian itu disimpulkan bahwa modifikasi N6-formil dari lisin mengganggu fungsi sinyal asetilasi dan metilasi, yang memainkan peran dalam fisiologi stres oksidatif dan nitrosatif. [13]
Amina adalah senyawa organik dan gugus fungsi yang mengandung nitrogen basa dengan pasangan elektron bebas. Perlindungan nitrogen terus menarik banyak perhatian dalam bidang kimia, seperti peptida, nukleosida, polimer dan sintesis ligan. Tetapi, dalam beberapa tahun terakhir, sejumlah gugus pelindung nitrogen telah digunakan sebagai pembantu kiral. Dengan demikian, desain baru, lebih ringan dan metodenya lebih efektif untuk perlindungan nitrogen masih aktif dalam topik sintesis kimia.
Gugus Pelindung imida dan amida: Kelompok ftalimida telah berhasil digunakan untuk melindungi gugus amino. Pembelahan dari N-alkilftalimida (1,81) mudah dilakukan dengan hidrazin, dalam larutan panas atau dalam dingin untuk waktu yang lama untuk memberikan (1,82) dan amina. Basa katalis hidrolisis N-alkilftalimida (1.81) juga memberikan yang sesuai amina.
Modifikasi Kitosan
Adanya gugus amina (NH2) dan dan hidroksil (OH) dari kitosan menyebabkan kitosan mudah dimodifikasi secara kimia.
Gugus aktif pada kitosan
Bila dibutuhkan perubahan gugus fungsional untuk menghalangi gangguan dalam beberapa rangkaian reaksi sintesis, salah satu caranya adalah dengan menggunakan gugus pelindung. Gugus pelindung merupakan suatu turunan yang dapat dibuat dan kemudian dihilangkan. Tiga syarat-syarat yang perlu diperhatikan dalam memilih gugus pelindung adalah sebagai berikut :
1. Gugus pelindung yang digunakan harus lebih reaktif
2. Gugus pelindung yang dipakai harus dengan mudah bereaksi dengan molekul target.
3. Kondisi reaksi dalam memasukkan gugus pelindung harus stabil.
4. Dapat dimasukkan pada kondisi reaksi lunak
5. Gugus pelindung harus dapat dengan mudah dihilangkan tanpa menggangu reaksi akhir.
Reaksi penggunaan gugus pelindung pada kitosan dikarenakan kitosan memiliki 2 gugus fungsi yang kereaktifan berbeda. Gugus amino dari kitosan lebih reaktif dari pada gugus hidroksilnya, sehingga untuk menghasilkan O-asilasi kitosan, perlu dilakukan proteksi atau perlindungan terhadap gugus amino. Basa shiff dapat digunakan sebagai gugus pelindung pada reaksi O-asilasi.
Gugus amino kitosan lebih reaktif daripada gugus hidroksilnya, sehingga untuk menghasilkan O-asilasi kitosan perlu dilakukan proteksi atau perlindungan terhadap gugus amin selama proses asilasi untuk menghasilkan O-Asil kitosan. Metode proteksi yang dilakukan antara lain melalui pembuatan basa Schiff disusul O-Asetilasi menggunakan larutan asetat anhidrin-piridin untuk mencegah hidrolisis asam dari basa Schiff. Reaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
Basa Schiff dapat digunakan sebagai gugus pelindung pada gugus amin (NH2), dilakukan dengan melarutkan kitosan terasetilasi dalam asam formiat 90% yang mengandung asetat anhidrida dengan asumsi protonasi akan mencegah terjadinya N-asilasi. Selanjutnya direaksikan dengan asilklorida dalam karbon triklorida dan piridin kering.
Contoh lain gugus pelindung untuk NH2 yaitu:
Gugus amino, N dari kitosan lebih reaktif dari pada gugus hidroksilnya, sehingga untuk menghasilkan O-asilasi kitosan perlu dilakukan proteksi atau perlindungan terhadap gugus amino. Reaksi O-asilasi dapat dilakukan melalui reaksi esterifikasi menggunakan katalis asam sulfat (2 M) ditambahkan kepada suspensi campuran kitosan dan asam alkanoat pada suhu kamar. Campuran dipanaskan pada suhu 80oC selama 4 jam disertai pengadukan. Asam sulfat yang ditambahkan akan membentuk ion hidrogen sulfit sebagai konter ion dari NH3+, selanjutnya berfungsi untuk memproteksi (sebagai gugus pelindung) N-kitosan. Kemudian pada suhu kamar, tambahkan natrium hidrokarbonat sampai pH 7 (netral).
Permasalahan :
1. Dari artikel diatas dikatakan bahwa pembuatan garam ammonium kuartener dapat dilakukan secara bertahap melalui pembuatan amina primer, sekunder dan tersier. Metoda yang digunakan melalui reaksi asam lemak/alkohol rantai panjang dengan ammoniak/senyawa nitril rantai panjang dengan hidrogenasi katalitik. Ada 4 tahap pembentukan senyawa amina sekunder yaitu 1. Imin, 2. Amina primer, 3. Pembentukan gas ammoniak, 4. Hidrogenasi akan menghasilnya senyawa amina sekunder. Pertanyaan saya, dari artikel yang saya baca dikatakan bahwa hasil dari reaksi hidrogenasi katalitik yang dilakukan pada suhu 175 derjaat celcius, tekanan 11 bar, dan selama 15 jam tidak menunjjukan terjadunya atau terbentuknya amina sekunder. Mengapa hal itu bisa terjadi ?
2. Dari artikel diatas dikatakan bahwa adanya gugus amina dan hidroksil adalah kitosan. Pada modifikasi kitosan bila dibutuhkan perubahan gugus fungsional untuk menghalangi gangguan dalam beberapa rangkaian reaksi sintetis maka diperlukan gugus pelindung. Gugus amino kitosan lebih reaktif dari pada gugus hidroksilnya sehingga untuk menghasilkan O-asilasi kitosan perlu dilakukan proteksi terhadap gugus amina selama proses asilasi untuk menghasilkan O-asil kitosan. Pertanyaan saya, bagaimana metode proteksi gugus amina itu dilakukan?
3. Dari artikel diatas dikatakan bahwa modifikasi gugus amina pada kitosan dari amina primer menjadi amina sekunder telah dikembangkan dengan beberapa pereaksi yaitu dengan NDMG ( N-metil-D-glucaminamoeity) dan TMAS (trimetilamine sulfur Trioxide) . Kitosan modifikasi dan stabilitas ion kompleks dipengaruhi oleh pH. Pertanyaan saya adalah pada sebuah penelitian tentang pengaruh pH terhadap efisiensi ekstraksi tembaga(I)tiosulfat olrh kitosan modifikasi menunjukkan bahwa jumlah gugus amina yang terprotonasi pada pH 4-6 tidak berbeda secara signifikan. Mengapa hal itu bisa terjadi?
Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.Gugus amino, N dari kitosan lebih reaktif dari pada gugus hidroksilnya, sehingga untuk menghasilkan O-asilasi kitosan perlu dilakukan proteksi atau perlindungan terhadap gugus amino. Reaksi O-asilasi dapat dilakukan melalui reaksi esterifikasi menggunakan katalis asam sulfat (2 M) ditambahkan kepada suspensi campuran kitosan dan asam alkanoat pada suhu kamar. Campuran dipanaskan pada suhu 80oC selama 4 jam disertai pengadukan. Asam sulfat yang ditambahkan akan membentuk ion hidrogen sulfit sebagai konter ion dari NH3+, selanjutnya berfungsi untuk memproteksi (sebagai gugus pelindung) N-kitosan. Kemudian pada suhu kamar, tambahkan natrium hidrokarbonat sampai pH 7 (netral).
BalasHapusNomor 3 Metode proteksi yang dilakukan antara lain melalui pembuatan basa Schiff disusul O-Asetilasi menggunakan larutan asetat anhidrin-piridin untuk mencegah hidrolisis asam dari basa Schiff. Reaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
BalasHapusSaya akan menjawab no 2.
BalasHapusMetode proteksi yang dilakukan antara lain melalui pembuatan basa Schiff disusul O-Asetilasi menggunakan larutan asetat anhidrin-piridin untuk mencegah hidrolisis asam dari basa Schiff. Reaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
Basa Schiff dapat digunakan sebagai gugus pelindung pada gugus amin (NH2), dilakukan dengan melarutkan kitosan terasetilasi dalam asam formiat 90% yang mengandung asetat anhidrida dengan asumsi protonasi akan mencegah terjadinya N-asilasi. Selanjutnya direaksikan dengan asilklorida dalam karbon triklorida dan piridin kering.
Saya akan mencoba menjawab permasalahan yang ke 2 Proteksi gugus amina dapat dilakukan dengan menggunakan[1]:
BalasHapusGugus Karbobenziloksi (Cbz) – dihilangkan dengan hidrogenolisis
Gugus Karbonil p-metoksibenzil (Moz atau MeOZ) – dihilangkan dengan hidrogenolisis, lebih labil dibanding Cbz
Gugus tert-butiloksikarbonil (BOC) (umum digunakan dalam sintesis peptida fase padat) – dihilangkan dengan asam kuat pekat (seperti HCl atau CF3COOH), atau dengan pemanasan hingga >80 °C.[3]
Gugus 9-Fluorenilmetiloksikarbonil (FMOC) (umum digunakan dalam sintesis peptida fase padat) – dihilangkan dengan basa, seperti piperidin[4]
Gugus Asetil (Ac) umum digunakan dalam sintesis oligonukleotida untuk proteksi N4 dalam basa nukleat sitosin dan N6 dalam basa nukleat adenin dan dihilangkan dengan perlakuan dengan basa, lebih sering, dengan amonia berair atau gas atau metilamina. Ac terlalu stabil untuk langsung dihilangkan dari amida alifatik.
Gugus Benzoil (Bz) umum digunakan dalam sintesis oligonukleotida untuk proteksi N4 dalam basa nukleat sitosin dan N6 dalam basa nukleat adenin dan dihilangkan dengan perlakuan dengan basa, lebih sering, dengan amonia berair atau gas atau metilamina. Bz terlalu stabil untuk langsung dihilangkan dari amida alifatik.
Gugus Benzil (Bn) – dihilangkan dengan hidrogenolisis
Gugus Karbamat – dihilangkan dengan asam dan pemanasan sedang.
Gugus p-metoksibenzil (PMB) – dihilangkan dengan hidrogenolisis, lebih labil dibanding benzil
3,4-Dimetoksibenzil (DMPM) – dihilangkan dengan hidrogenolisis, lebih labil dibanding p-metoksibenzil
Gugus p-metoksifenil (PMP) – dihilangkan dengan amonium serium(IV) nitrat (CAN)
Gugus Tosil (Ts) group – dihilangkan dengan asam pekat (HBr, H2SO4) & agen pereduksi kuat (natrium dalam amonia cair atau natrium naftalenida)
Gugus Troc (trikloroetil kloroformat) – dihilangkan dengan penambahan Zn dalam asam asetat
Gugus Sulfonamida lain (Nosil & Nps) – dihilangkan dengan samarium iodida, tributiltin hidrida.
Berikut jawab saya untuk masalah no 3
BalasHapusMetode proteksi yang dilakukan antara lain melalui pembuatan basa Schiff disusul O-Asetilasi menggunakan larutan asetat anhidrin-piridin untuk mencegah hidrolisis asam dari basa Schiff. Reaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
Nomor 3 Metode proteksi yang dilakukan antara lain melalui pembuatan basa Schiff disusul O-Asetilasi menggunakan larutan asetat anhidrin-piridin untuk mencegah hidrolisis asam dari basa Schiff. Reaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
BalasHapusNomor 3 Metode proteksi yang dilakukan antara lain melalui pembuatan basa Schiff disusul O-Asetilasi menggunakan larutan asetat anhidrin-piridin untuk mencegah hidrolisis asam dari basa Schiff. Reaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
BalasHapusNo 3
BalasHapusGugus amino, N dari kitosan lebih reaktif dari pada gugus hidroksilnya, sehingga untuk menghasilkan O-asilasi kitosan perlu dilakukan proteksi atau perlindungan terhadap gugus amino. Reaksi O-asilasi dapat dilakukan melalui reaksi esterifikasi menggunakan katalis asam sulfat (2 M) ditambahkan kepada suspensi campuran kitosan dan asam alkanoat pada suhu kamar. Campuran dipanaskan pada suhu 80oC selama 4 jam disertai pengadukan. Asam sulfat yang ditambahkan akan membentuk ion hidrogen sulfit sebagai konter ion dari NH3+, selanjutnya berfungsi untuk memproteksi (sebagai gugus pelindung) N-kitosan.
Saya mencoba jwb. No 2 .Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
BalasHapusBasa Schiff dapat digunakan sebagai gugus pelindung pada gugus amin (NH2), dilakukan dengan melarutkan kitosan terasetilasi dalam asam formiat 90% yang mengandung asetat anhidrida dengan asumsi protonasi akan mencegah terjadinya N-asilasi.
Permasalahan 2 Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
BalasHapusSaya akan mencoba menjawab permasalahan yang ke 2 Proteksi gugus amina dapat dilakukan dengan menggunakan[1]:
BalasHapusGugus Karbobenziloksi (Cbz) – dihilangkan dengan hidrogenolisis
Gugus Karbonil p-metoksibenzil (Moz atau MeOZ) – dihilangkan dengan hidrogenolisis, lebih labil dibanding Cbz
Gugus tert-butiloksikarbonil (BOC) (umum digunakan dalam sintesis peptida fase padat) – dihilangkan dengan asam kuat pekat (seperti HCl atau CF3COOH), atau dengan pemanasan hingga >80 °C.[3]
Gugus 9-Fluorenilmetiloksikarbonil (FMOC) (umum digunakan dalam sintesis peptida fase padat) – dihilangkan dengan basa, seperti piperidin[4]
Gugus Asetil (Ac) umum digunakan dalam sintesis oligonukleotida untuk proteksi N4 dalam basa nukleat sitosin dan N6 dalam basa nukleat adenin dan dihilangkan dengan perlakuan dengan basa, lebih sering, dengan amonia berair atau gas atau metilamina. Ac terlalu stabil untuk langsung dihilangkan dari amida alifatik
Saya akan menjawab no 2.
BalasHapusMetode proteksi yang dilakukan antara lain melalui pembuatan basa Schiff disusul O-Asetilasi menggunakan larutan asetat anhidrin-piridin untuk mencegah hidrolisis asam dari basa Schiff. Reaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.
Saya akan menjawab no 3.
BalasHapusReaksi antara kitosan dengan anhidrida asetat menghasilkan senyawa ester yang merupakan kitosan asetat. Dalam hal ini kitosan terlebih dahulu direaksikan dengan asetaldehida membentuk aldimin untuk melindungi gugus amina. Kitosan laurat diperoleh dari reaksi transesterifikasi antara metil laurat dengan kitosan asetat. Selanjutnya dilakukan deproteksi dengan menambahkan natrium bikarbonat untuk memperoleh kitosan laurat.